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Abscract
Prostate cancer (PCa) is a cancer with a broad spectrum of biological behavior and it is a 
heterogeneous nature. In order to prevent overdiagnosis and overtreatment, and to detect clinically 
significant PCa, standardized scoring and grading systems are used in imaging and pathological 
examinations. However, reproducibility and agreement between readers in these diagnostic stages, 
which require experience, are low. Promising results have been achieved by integrating artificial 
intelligence (AI)-based applications into the diagnosis and management of PCa. In radiological 
and pathological imaging, computer-aided diagnostic tools have increased clinical efficiency and 
achieved diagnostic accuracy comparable to that of experienced healthcare professionals. This 
review provides an overview of AI applications used in radiological imaging, prostate biopsy, and 
histopathological examination in the diagnosis of PCa.
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INTRODUCTION
Prostate cancer (PCa), the second most frequently diagnosed 
cancer in men, and it is definitively diagnosed through 
histopathological evaluation (1). Prostate sampling is 
performed via targeted and/or systematic biopsy under 
transrectal ultrasonography (TRUS) guidance to confirm 
cancer suspicion, which arises from elevated prostate-specific 
antigen (PSA) levels or suspicious digital rectal examination 
findings. With the use of standardized Prostate Imaging 
Reporting and Data System (PI-RADS) scoring through 
multiparametric magnetic resonance imaging (MpMRI) of 
the prostate prior to biopsy, MRI-targeted biopsies (MRI-
TB) have been applied, gaining importance in diagnosing 
clinically significant PCa (csPCa) (2). The Gleason score is 
determined based on the histological features observed in 

tissue samples stained with hematoxylin and eosin (H&E), 
and grading is performed using the International Society of 
Urological Pathology (ISUP) grade grouping (3).

PCa has the widest biological behavior spectrum among 
urological cancers. It is mostly multifocal within the prostate 
gland, exhibiting a heterogeneous nature and a wide range 
of prognoses (4). The goal is to enhance diagnostic accuracy 
and csPCa detection rates while preventing unnecessary 
treatments and overdiagnosis. However, despite standardized 
pathological evaluation and supportive radiological imaging, 
there are some limitations. Interpreting MpMRI requires 
experience, and inter-radiologist agreement can vary (5). 
Due to the subjective nature of Gleason scoring and tumor 
heterogeneity, reproducibility between pathologists is 
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poor (6). The use of artificial intelligence (AI)-based tools 
is increasing to improve clinical efficiency and diagnostic 
performance by reducing variability in interpretations among 
radiologists and pathologists (7).

Machine learning (ML) is an AI system that can automatically 
learn in an unsupervised manner or through supervised data 
labeled by humans by creating mathematical algorithms. 
Deep learning (DL) is a subset of ML that uses artificial neural 
networks to mimic the human brain and can independently 
derive nonlinear relationships and features (8). The ability 
of AI in diagnostic evaluation has brought its use in image 
analysis into the practice of pathology and radiology.

In this study, we present a summary of the use of AI in 
radiological and pathological evaluation for the diagnosis of 
PCa.

MpMRI Interpretation and Artificial Intelligence
Prostate MpMRI is recommended by guidelines for the 
local staging of PCa. Additionally, by combining MRI 
images and suspicious lesions with ultrasonography (US), 
fusion biopsy can be performed, contributing to increased 
diagnostic efficiency (9). AI applications in MpMRI have 
improved diagnostic performance by reducing the workload 
of radiologists in prostate segmentation, lesion detection, and 
characterization (10).

Despite the increased use of MpMRI and improvements 
in radiologist interpretation accuracy, particularly after 
standardization with PI-RADS, there are still some 
limitations. Meta-analyses have found the pooled specificity 
of MpMRI for PCa detection to be 0.73. It has been reported 
that 5-30% of cancers go undetected and readers have a 
25% error margin (11,12). Another limitation is the low 
reproducibility of reporting among radiologists. Inter-reader 
agreement is around 50%, while intra-reader agreement is 
60-74% (13). The use of AI in radiology and computer-aided 
diagnosis (CAD) systems is expected to increase inter-reader 
agreement and improve PCa detection rates in MpMRI.

Radiomics is a library that enables the high-throughput 
analysis of quantitative radiological features in medical 
imaging and forms the foundation for AI use in PCa 
management (14). In MpMRI, ML preprocesses prostate 
images and performs segmentation. Lesions are detected 
and classified in the recorded prostate image. The PI-RADS 
classification generated through ML analysis, predominantly 

based on T2-weighted and diffusion-weighted imaging (DWI) 
in MpMRI, is verified by an experienced radiologist. This can 
reduce the need for experienced radiologists and alleviate 
their workload. Additionally, AI can improve reproducibility 
between radiologists and be used as an independent reader. 
However, experienced radiologists are also needed to input 
verified data for AI training and to validate the results 
generated by AI. Another challenge that complicates AI 
learning is data heterogeneity arising from variations in 
MpMRI acquisition (15).

Clinical studies and meta-analyses have shown that AI can 
perform on par with radiologists in detecting PCa in MpMRI, 
particularly with CAD systems. The benefits of using AI in 
MpMRI extend beyond lesion detection. AI can provide 
information about tumor characterization and aggressiveness, 
significantly reducing the time radiologists spend interpreting 
images. In studies on prostate segmentation, a similarity 
coefficient of 0.88-0.93 was achieved between manual 
segmentation and AI-based segmentations (16,17). In a 
study on AI-based lesion detection in MpMRI, a sensitivity 
of 78% was found for index lesions with PI-RADS ≥3. For less 
experienced radiologists, detection sensitivity for transitional 
zone lesions was 66.9%, while this rate increased to 83.8% 
with CAD. Moreover, with CAD assistance, the MRI reading 
time for experienced radiologists decreased from 3.5 minutes 
to 2.7 minutes, and for moderately experienced radiologists, 
it decreased from 6.3 minutes to 4.4 minutes (18). In a study 
by Song et al. with 195 patients, AI demonstrated an 87% 
sensitivity in lesion detection (19). In another study comparing 
histopathological diagnosis, AI detected the index lesion with 
3.4% lower sensitivity and clinically significant lesions with 
1.5% lower sensitivity than experienced radiologists (20). 
In a study with 364 patients, Le et al. found that AI showed 
100% sensitivity and 76.9% specificity in distinguishing 
clinically significant and insignificant cancer (21). In a study 
by Giannini et al., prostate segmentation and lesion detection 
were performed in MRI images of 131 patients, divided into 
training and validation groups, using CAD, and verified with 
pathology. The CAD system did not classify any aggressive 
tumors as benign, and the area under the curve (AUC) 
was found to be 0.96 in the training arm and 0.81 in the 
validation arm (22). On the other hand, Mehralivand et al., in 
a multicenter study involving nine radiologists with varying 
levels of experience, found that AI did not significantly 
improve the performance of less experienced radiologists 
and had no noticeable effect on inter-reader disagreement. 
However, a significantly higher sensitivity for transitional 
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zone lesions was detected for AI (23). In a recently conducted 
large multicenter study, AI demonstrated 94.3% sensitivity 
in predicting csPCa (24). These studies are promising for 
personalized disease management in PCa patients using 
automatic CAD systems.

Prostate Biopsy and Artificial Intelligence
With the incorporation of MpMRI into routine practice for 
PCa management, fusion MRI-TB is recommended to increase 
diagnostic accuracy when suspicious lesions are present (25). 
AI applications used in prostate segmentation and lesion 
detection in MpMRI can be automatically combined with 
TRUS images for biopsy, increasing the precision of targeted 
biopsies and making the process more feasible for radiologists 
and urologists (26).

For fusion MRI-TB, accurately combining the TRUS image 
with target lesions and localizing the biopsy needles is of 
critical importance. In a retrospective study by Mehrtash 
et al., the needle trajectory was labeled in 71 patients who 
underwent MRI-TB, and this data was used for AI learning. 
Validation was conducted on 21 patients who had not been 
seen by the AI. They achieved accuracy with an acceptable 
error of 0.98 degree in the needle trajectory (27). Wang et al. 
in their prospective randomized controlled study compared 
targeted 6-core biopsy with AI-assisted prostate ultrasound, 
systematic biopsy under TRUS guidance, and cognitive fusion 
MRI combined biopsy. In this multicenter study, the detection 
rate of PCa and csPCA was found to be higher in biopsies 
performed with AI-assisted prostate ultrasound guidance (28). 
Anas et al. achieved similar accuracy to offline segmentations 
by performing real-time prostate segmentation during MRI-
TB using AI (29). Real-time prostate segmentation enhances 
the feasibility of the MRI-TB procedure. AI-assisted biopsy 
has also been used in nerve-sparing robot-assisted radical 
prostatectomy for locally advanced PCa. After the prostate is 
removed, the presence of tumors in the neurovascular bundle 
is evaluated using a three-dimensional automatic augmented 
reality system, and selective excisional biopsy is performed. 
The presence and location of lesions in the neurovascular 
bundle were correctly identified with 87.5% accuracy. This 
AI-based application may allow for nerve-sparing surgery in 
locally advanced disease without compromising oncological 
outcomes (30).

Histopathological Evaluation and Artificial Intelligence
The gold standard method for diagnosing PCa is 
histopathological examination, which relies on scoring 

biopsy material according to the Gleason grading system. 
This method categorizes tumors into risk groups and provides 
information about prognosis. However, there is low inter-
reader agreement in histopathological scoring systems for 
PCa diagnosis, similar to what is observed in MpMRI. Studies 
indicate that the rate of discordance among pathologists 
ranges from 30% to 53% (31). Instead of microscopic 
examination, digital histological images offer the possibility 
of evaluation through CAD tools in various settings, aiming 
to reduce workforce demands and increase efficiency (32).

The use of AI in digital pathology is primarily focused on 
the Gleason grading system. Studies involving AI have 
evaluated the agreement with pathologists and the sensitivity 
of the system. Arvanti et al. reported a sensitivity of 70% 
when classifying tissues as benign and Gleason grades 3-5 
in the evaluation of tissue microarrays by AI. Moreover, 
the agreement between the AI model and pathologist 
interpretations was also found to be high (kappa, 0.71-
0.75) (33). In a study where slide images of prostatectomy 
material were graded for Gleason scores using a developed 
DL method on 311 slides, a sensitivity of 70% was identified 
(34). Subsequently, Karimi et al. achieved 92% accuracy 
in distinguishing benign tissue from malignant tissue and 
90% accuracy in differentiating low and high-risk Gleason 
grades using their designed DL method. In an evaluation 
using 5,759 biopsy samples from 1,243 patients, the AI model 
demonstrated superior performance with a kappa score of 
0.854, compared to 15 pathologists (35).

Shao et al. evaluated an AI model that analyzes digital 
pathology images of 502 patients who underwent radical 
prostatectomy and did not receive additional treatment, all 
of whom had long follow-up periods. They compared this 
AI model to risk classification nomograms for predicting 
biochemical recurrence. The AI model reclassified 3.9% 
of patients who were classified as low-risk in conventional 
nomograms as high-risk, while 21.3% of patients classified as 
high-risk were reclassified as low-risk. The authors noted that 
having this information post-radical prostatectomy would 
lead to different treatment approaches and patient counseling 
(36). In a recent study, 1,279 slides obtained from prostate 
biopsies were digitized and validated for use in AI learning. 
The developed AI model was integrated into routine clinical 
practice for three years, serving as a second-read system 
for biopsy material in approximately 9,200 patients. The AI 
model demonstrated 96.7% specificity and 96.6% sensitivity 
in detecting PCa, while showing 82.1% specificity and 81.1% 
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sensitivity in distinguishing low-risk PCa from intermediate-
high risk PCa (37). AI-based models used in Gleason grading, 
which is one of the most important prognostic factors in PCa, 
assist pathologists by improving diagnostic performance.

CONCLUSION
AI,  that is increasingly being used and gaining importance 
in the diagnosis and management of PCa, shows promise 
in reducing the workload and increasing the efficiency 
of urologists, pathologists, and radiologists. Studies have 
shown that AI achieves similar success to radiologists in 
lesion detection during MpMRI interpretation, enhances the 
applicability of MRI-TB, and improves concordance among 
pathologists during histopathological examination. It may 
also help mitigate potential shortcomings of less experienced 
clinicians. With large-sample, standardized studies conducted 
through collaboration between healthcare professionals and 
technology developers, the effectiveness of AI in improved 
patient outcomes and personalized patient management in 
PCa should be clearly demonstrated.
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